LAMINAR BOUNDARY LAYER WITH UNIFORM
SUCTION ON FLAT PLATE IN OSCILLATING FLOW

I. V. Pushkareva

We examine unsteady incompressible fluid flow in a laminar boundary layer with uniform
suction for longitudinal flow over a flat plate when the external stream is a flow with con~
stant velocity, on which there is superposed a sinusoidal disturbance convected by the
stream, analogous to [1]. We study the stability of such flow in the boundary layer.

1. Velocity Field in Boundary Layer in the Presence of Periodic Disturbances in the Outer Stream.
We assume that the external stream velocity has the form

U, t) = U1 + Aeosolz/ Uy — 1)l (1.1)

and fluid suction with the constant velocity v, < 0 is provided along the entire wetted surface of the plate.

The equations of the unsteady two-dimensional boundary layer have the form

ou du ou 1 dp % ou O
‘aT'“‘E"’”W— ) 6z+v6y‘“ Bz+6y'_0 (1.2)
1 op U ou
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The boundary conditions are
u(z, y, 8) =0, vz, y, t) =v,=const (y=0)
u(z,y,8) > Ulz,t) (y — oo)

Here u(x,y,t) and v(x,y,t) are respectively the longitudinal and transverse velocity components in
the boundary layer, p the pressure, v the kinematic viscosity, the x axis is directed along the plate, the y
axis is perpendicular to the plate.

In (1.2) we convert to the dimensionless variables

volz wly
u=Uyu’, U=|UolU°,C=7]0—v, ”"l=!

,-r:m(%—t) 1.3)

We seek those solutions for u°® and v° which will be functions only of 7 and 7. These solutions will be
applicable beginning only at some distance from the leading edge of the plate. Such solutions must satisfy
the following equations

u® u®  gou® AP . fu° | 90°
W+T(1_u0)_‘§“?_v %":TTS‘H%’T?{ +79ﬁ =0 (1.4)
while the boundary conditions
=0 r=—1 (Nn=0, w—>1+Aicost (n—>o0), y=nv0/0

Assuming A << 1, we seek the solution of (1.4) in the form
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2, 7) = ue(n) -+ Ay (,7) + Mu(ner) + .o (1.5)
Y, 1) = we(n) + hwy (1) + Mwp(n, 1) + ...

Substituting (1.5) into (1.4) and collecting terms with the same powers of A, we obtain the systems of
equations for the coefficients of (1.5).

The terms with zero power of A yield the stationary equations

Ouo 3" &
w e~ T g (1.6)
with the boundary conditions
w, = 0, we = —1 =20, uy—>1n-> o)

These are known equations for the asymptotic suction profile on a flat plate. Their solution has the
form

Uy =1 —¢e1, w=-—1 (1.7)
The terms with A1 yield the equations
L(uy, wy) =0, Ku, w)=0 (1.8)
with the boundary conditions
U, =w; =0 (n=0), wu—>cost (- 00)

The terms with A2 yield the equations

L (ug, wy) = —;:— sin 2t Tul% 4wy a—a'% (1.9)

K(u,, wy) =0
with the boundary conditions

up=w, =0 (=0), u,>0 (n—>o0)

The terms with A2 (k > 2) yield the equations

k—1 k—1
Aty Lo Gy
L(uy, we) = u; + 2w
(i ) =7 B w5+ 2 (1.10)
K{(uy, wi)=0
with the boundary conditions
ue=wr=0 (M=0), wm—0 (n—c0)
Here
L{u, wy= %+Ta‘“% ~}——g% — e
’ (1.11)
[ ow

In view of the fact that (1.8) are linear homogeneous equations and their coefficients are independent
of the variable T, we seek the solutions of (1.9) in the form

ur = Qo (M) €™ + Qo1 (M) e, wy = o1 (n) €1 + Yoy (W) &73° (1.12)
(here the overbar denotesconjugate function),

Substituting (1.12) into (1.8), we obtain for ¢y and ¢y the following system of ordinary differential
equations

Por” 4 Qor” 4~ T Por — € Mor = 0,  Por” + iTPpr = 0 {1.13)
with the boundary conditions
Por =YPor =0 (M =0), @g-—>Y, (n— 00)

419



A 8 Az

~
)

7

e

0

\‘Qw
I~

Qe [ >
T~
N
-)
DS

02 / TSN AN
) By 4 8 I
IS Z<
[ -07 ﬁ \\/?\ %
3
i ? AR L7
7 4 8 0 4 2 72
Fig. 1
it A 0.005 The solution of (1.13) has the form
U *
—————— i e [ 7 7
\\ 2.0/ I P (n) = e‘“g Q (2) ¢’ dz, Yo (M) = 6‘“ST (z) € dz 1.14)
55 0.03 0 0
\ 005 | __——+—""1 where
; il — Q@) = e 122Vl T(a)=Z2V el
» b Zi(x) = Cy;J; (2) + Y (%)
4 %= Yo Vix LRV A T ;
250 W 7 Cll:TVLTT(%%-))_’ 012: ——Z—VZT, Cl[): —1/-1']’611, 020:— —-;LZT
Fig. 2

Here Jj(x) and Y;(x) are Bessel functions of the first and second
kind respectively.

We seek the solutions of (1.9) in the form
Uy = fa(0) - Qa1 (M) €2 + Pur (W) €87, wy = by (W) €3 4 hyy (M) 725 1.15)
Similarly, for the functions uy, wi we seek the solutions of (1.10) in the form:

for k = 2n + 1)

n
Uy = Z (Prmeim+1T L gkme%(zmu)r)

m=0

n
wy = 2 (Prm gitzmi)r | ;I,km =iam+1)7)

m=0

for k =2n

ur = fx (TI) + 2 ((P}:m eiamt | $km g-izmr)

m=1

wi = Z (Vrm giamr '\—Pkm e-izm)

m=L

Substituting (1.15) into (1.9), we obtain for f,, @13, and 34y the system of equations

" 4 fa' = Qo1’ Vo1 T+ Por’ Vo1 (1.16)
On” + P’ + 207 ey — ey = — a7 -+ iY Poa® + Por"Por (1.17)
Yy + 2P =0 1.18)

with the boundary conditions
=0 =%u=0 (n=20) =0, =0 (1 )

The solution for f,(m) can be written in the form
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fa(m) = e $ e (0or’ (2) Bor () + T (5) Y (2)1dz 1.19)

0 ¢

The solutions for ¢y and ¥4y and also for the remaining gkmy and ¥y, can be constructed formally af-
ter determining the Green's function for the homogeneous system (1.13) with zero boundary conditions, It
is not difficult to obtain the Green's function, using the solution (1.14). For the functions fk(n) the solutions
are analogous to (1.19). The use of a computer is necessary for concrete construction of the functions fk-

Pkms and Zpkm .

As was done in [1], the solutions for uy, wy and w, w, can be represented in the form

u,(n, T) = A;4(n) cos T + By4(n) sin v

wi(n,t) = A0*(m) cos T + Big*(n) sin 1 (1.20)
(N, 1) = Ayo(m) + An(n) cos 2t + Byy(n) sin 2t
wy (M, T) = Ay*(n) cos 2t + B, *(n) sin 2t

where
Ay = 2Req@y, By = — 2Im @q, A4;* = 2Re ¥y
Bio* = — 2Im Yy, Ay = o, Ay = 2 Re gy
By = — 2 Im g, Ay * = 2Repyy, By* = — 2Im ¢y

Figure 1 shows the functions Ay, Byy, and Ay, where the following values of ¥ correspond to curves

1,...,8.
1 2 3 4 56 17 8

= 0 01 05 1 3 5 7 30

Let us compare this solution with the solution of {2] for the boundary layer with uniform suction when
the external flow has the velocity U(t) = Uy(l + A cos wt). Just as for boundary layers without suction [1],
the bebavior of the flow in the boundary layer in these two cases is significantly different. It is interesting
to note that for both cases the behavior of the flow in the boundary layer with uniform suction agrees qual-
itatively with that of the corresponding boundary layer without suction.

2. Study of Flow Stability in the Boundary Layer. The basic flow whose stability is studied is the
flow obtained in Section 1 in the boundary layer of a flat plate with uniform suction when the outer flow is
given by (1.1). Neglecting, as is usually done in examining boundary layer flow stability, the lengthwise
nonuniformity of the stream and the transverse velocity component, the flow in the boundary layer can be
considered approximately plane-parallel with the longitudinal velocity u(y,t).

We shall use the very simple quasistationary definition of nonstationary flow stability, i.e., for each
moment of time we determine the value of the critical Reynolds number R as for stationary flow and we
take as the unknown the minimal value of R in the limits of a single period for the problem being examined.

To study the stability we use the Lin equation [3] for approximate determination of the minimal value
of the Reynolds number on the neutral curve, obtained in the small oscillation method of hydrodynamic
stability theory.

The Lin equation has the form

2507 (0
R~ BUO)

T, c=U(y.) @.1)
where y, is the root of the equation
7 T (0¥} T () T” (yo)
— a0 {3_2U_< ] v ~0.58 2.2
) U (yc) U™ (ye) @.2)
The dimensionless variables are
y=290, u=UTU, R=Uv 2.3)

Here 6 is the boundary-layer thickness, defined as the distance from the wall to the point where the
velocity u = 0.999 U (prime denotes differentiation with respect to y).
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Figure 2 shows the critical Reynolds number

Ugd*

By=R 5

based on the displacement thickness 6* = v/|v,| and the velocity U, versus the parameter ¥ and the oscil-
lation amplitude A. The dashed straight line corresponds to Ry = 3.93 - 10%. The Lin equation yields this
value of Rx for the stationary asymptotic suction profile (1.7).

Analyzing the influence of the frequency w on the value of R, , we see that, just as for the boundary
layer without suction [1}], there is a most "dangerous" range of frequencies in which R , takes minimal values,
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