
LAMINAR BOUNDARY LAYER WITH UNIFORM 

SUCTION ON FLAT PLATE IN OSCILLATING FLOW 

I. V. Pushkareva 

We examine unsteady incompress ib le  fluid flow in a laminar  boundary layer  with uniform 
suction for longitudinal flow over  a flat plate when the external s t r eam is a flow with con- 
stant velocity, on which there  is superposed a sinusoidal disturbance convected by the 
s t ream,  analogous to [1]. We study the stability of such flow in the boundary layer.  

1. Velocity Field in Boundary Layer  in the Presence  of Per iodic  Disturbances in the Outer Stream. 
We assume that the external s t r eam veloci ty has the form 

U(z, t) = U0[l + ~, cos o(x / Uo -- t)l (1.1) 

and fluid suction with the constant velocity v 0 < 0 is provided along the entire wetted surface of the plate. 

The equations of the unsteady two-dimensional  boundary layer  have the form 

8u 8u Ou 1 Op 02u Ou 8v 
a - / - + u W + v ~  - =  p 0x+v~-~' o--7+~v=0 

1 0 p  8U OU 
p a~ = ~ - + U  o-%- 

The boundary conditions a re  

(1.2) 

tt(x, y, t) = O, v(x, y, t) = v o = const (y -= O) 
u (x, y,  t) - +  u(:~,t) (y -+ oo) 

Here u(x,y, t) and v(x, y, t) a re  respect ively  the longitudinal and t r ansve r se  velocity components in 
the boundary layer,  p the p res su re ,  v the kinematic viscosi ty,  the x axis is directed along the plate, the y 
axis is perpendicular  to the plate. 

In (1.2) we conver t  to the dimensionless var iables  

(• (1.3) u=u~176  v = l v o l  v~ ~=-VXo~ ' ~ 1 = - ~ -  , ~=o) ,uo 

We seek those solutions for u ~ and v ~ which will be functions only of 77 and T. These solutions will be 
applicable beginning only at some distance f rom the leading edge of the plate. Such solutions must  satisfy 
the following equations 

8~u ~ . .. 8u ~ o 8u" ~2 8u o 8v o 
- g ~ - T ( l - - u " I - ~ - - - v  ~-~ = - T T s i n 2 v ,  7 ~ -  + - ~  = 0  (1.4) 

while the boundary conditions 
a ~  v ~  (~ = 0 ) ,  u ~  + k c o s ~  ( ' l - + ~ 1 7 6  V = v o / v 0  ~ 

Assuming X << 1, we seek the solution of (1.4) in the form 

Novosibirsk, Transla ted f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 3, 
pp. 66-70, May-June,  1970. Original a r t ic le  submitted August I2,  1969. 

�9 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15,00. 

418 



u~ ,) = tt0(~l) + ~,~tx (n, ,)  + Z~(q , ~ )  + ... 

v~ ~) = Wo(U) + ~w~ (n,~) + ;~w~(n, ~) + ... 
(1.5) 

Substituting (1.5) into (1.4) and collecting t e rms  with the same powers of ~, we obtain the sys tems of 

equations for the coefficients of (1.5). 

The t e rms  with zero  power of X yield the s ta t ionary equations 

w~h the boundary cond~ions 

C~'UO C~WO Wo ~ = a~-T, ~ = 0 (1.6) 

fo rm 

~ 0 = 0 ,  w 0 = - - t  ( n=O) ,  u 0 - ~ f ( n ~ o o )  

These are  known equations for the asymptotic suction profile on a flat plate. Thei r  solution has the 

U 0 ~ | - -  e - ~  

The t e r m s  with k t yield the equations 

w0 = -- I (1.7) 

K(ai, w0 = 0 (1.8) L ( a i ,  Wl) = O, 

with the boundary conditions 

u l = w ~ = O  (~1=0), 

The t e r m s  with X 2 yield the equations 

ul -+  cos �9 (~ -~ oo) 

w~h the boundary cond~ions 

- -  8ui aui L (u2, w2) = + sin 2~ -t- Tul-~ + Wl 

K(u~, w~) = 0 

u ~ = w = = 0  01=0) ,  ~ t ~ 0  01-+oo) 

The t e rms  with k 2 (k > 2) yield the equations 

k--i k--i 
Ouk--r p ~uk--i  

i=l i =I 

K (uk, wk) = 0 

u~ = w~ = 0 (~ = 0), u~-~ 0 (~1 -> oo ) 

L ( u ,  w ) =  0~ ou , Ou + ve-~ "Vi ~- Y q  - ~-~w 

Ou 8w 
K (u, w) = 7 ~ -  + ~-q 

with the boundary conditions 

Here 

(1.9) 

(1.10) 

(1 .ii) 

In view of the fact that (1.8) a re  linear homogeneous equations and their  coefficients a re  independent 
of the var iable  v, we seek the solutions of (1.9) in the form 

ui = %1(~) e ~ + ~ol (~1) e -~, wi = %l(~l)e ~" + ~01(~l) e -i~ (1.12) 

(here the overbar  denoteseonjugate function). 

S u b s t i t u t i n g  (1.12) in to  (1.S), we obtain for ~01 and r the following sys tem of ord inary  differential 
equations 

To(' + % (  4- iTe-~:~oi - -  e - ~ o i  ~ O, ~oi" + iT(Poi ~ 0 (1.13) 

with the boundary conditions 
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The  s o l u t i o n  of (1.13) has  the  f o r m  

"o 71 

%~01) = e-~IQ (z) ezdz, %101) = e-~ I T(z) e~dz (1.14) 
0 0 

Q ( z ) = e - z / ~ Z l ( 2 g K e z [ 2 ) ,  T(z) Zo(21/'--~e -z/~) 

Zi (x) = C1J~ (x) + C~iY~ (x) 

-:-- ] / '~ '~Cl l  ' C2o = ~ '  

H e r e  Ji(x)  and  Yi(x) a r e  B e s s e l  func t ions  of the  f i r s t  and s e c o n d  

k ind  r e s p e c t i v e l y .  

W e  s e e k  the  s o l u t i o n s  of  (1.9) in the  f o r m  

u~ = / ~  (q) + ~11 (n) e ~  + ~11(n) e-~% we = r (n) e ~: + ~n  (q) e - ~  

S i m i l a r l y ,  fo r  the  func t ions  Uk, W k we s e e k  the  s o l u t i o n s  of  (1.10) in the  f o r m :  

n 

~ 0  

W~ = ~ (~km e i(~m+l)" + ~km e -i(~m+i)z) 

f o r k  = ( 2 n + l )  

(1.15) 

fo r  k = 2n 

u~ = f~ (q) + (9~m ei~,-~ + 9k,- e-i~"'9 
,-,,=l 

wk = ~ (~2~ e ~ '  + ~ m  e - i 2~ )  
'tn~l 

Subs t i tu t ing  (1.15) into (1.9), we ob t a in  fo r  f2 ,  g~ and e l l  the  s y s t e m  of  equa t ions  

f2" -~  12' = (P01' ~)01 + q)01 t ~01 

~ i i " +  q~il' + 2i~" e-~q~ll --e-'~Pii  = - -  I]4 iy + ~'q%i ~ q- %1'%i 

~ l i '  + 2T cpil : 0 

wi th  the  b o u n d a r y  cond i t i ons  

12 = (~11 = ~11 ---~ 0 (~ : 0 ) ,  12 - '~  0 ,  (~11 ~ 0 (%l "-~ OO) 

(i . i6) 

(1.17) 

(1.18) 

T h e  s o l u t i o n  fo r  f2 07) can  be  w r i t t e n  in t he  f o r m  
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'/1 oo 

= + ( z . 1 9 )  
0 t 

The so lu t ions  for  ~i l  and  r and a l so  for  the r e m a i n i n g  ~km and  Ckm can be c o n s t r u c t e d  f o r m a l l y  a f -  
t e r  d e t e r m i n i n g  the G r e e n ' s  func t ion  for  the homogeneous  s y s t e m  (1.13) with ze ro  b o u n d a r y  cond i t ions .  It 
is not  diff icul t  to ob ta in  the  G r e e n ' s  funct ion,  us ing  the so lu t ion  (1.14). F o r  the  funct ions  fk0?) the  so lu t ions  
a r e  ana logous  to (1.19). The  use  of a c o m p u t e r  is n e c e s s a r y  for  c o n c r e t e  c o n s t r u c t i o n  of the func t ions  f k ,  

~km,  and Ckm" 

As was  done in [1], the  so lu t ions  for  ul,  w 1 and u2,w 2 can  be  r e p r e s e n t e d  in the f o r m  

ui0q, "r) ---- Alo(~l) cos "~ + Bio(~l) sin "~ 
wi0],'0 ---- Alo*(~]) cos T ~- Blo*(~ ) sin "~ (1.20) 

u2(T1, ~) = A2o(~l) + A2~(~) cos 2"~ + B2~(~I) sin 2~ 
w2(~], 1:) = A21"(~1) cos 2~ + B21*(~l) sin 2, 

w h e r e  

Aio = 2Re(Poi, Blo = - -  2ira (Pol, Aio* : 2Re ~ 0 1  

Bio* ;-= - -  2Im r A2o = ]~, A2i = 2 Re (Pii 
B~i : - -  2 Im (Pil, A2i* = 21:(e~il, B~i* : - -  2Ira ~ii  

F i g u r e  1 shows the funct ions  A10 , B10, andA20, w he r e  the  following va lues  of 7 c o r r e s p o n d  to c u r v e s  
1,...,8. 

Curves t 2 3 4 5 6 7 8 
y~ 0 0.1 0.5 i 3 5 7 30 

Let us compare this solution with the solution of [2] for the boundary layer with uniform suction when 
the external flow has the velocity U(t) = U0(l + k cos wt). Just as for boundary layers without suction [i], 
the behavior of the flow in the boundary layer in these two cases is significantly different. It is interesting 
to note that for both cases the behavior of the flow in the boundary layer with uniform suction agrees qual- 
itatively with that of the corresponding boundary layer without suction. 

2. Study of Flow Stability in the ~oundary Layer. The basic flow whose stability is studied is the 
flow obtained in Section 1 in the boundary layer of a flat plate with uniform suction when the outer flow is 
given by (I.I). Neglecting, as is usually done in examining boundary layer flow stability, the lengthwise 
nonuniformity of the stream and the transverse velocity component, the flow in the boundary layer can be 
considered approximately plane-parallel with the longitudinal velocity u(y, t). 

We shall use the very simple quasistationary definition of nonstationary flow stability, i.e., for each 
moment of time we determine the value of the critical Reynolds number R as for stationary flow and we 
take as the unknown the minimal value of R in the limits of a single period for the problem being examined. 

To study the stability we use the Lin equation [3] for approximate determination of the minimal value 
of the Reynolds number on the neutral curve, obtained in the small oscillation method of hydrodynamic 
stability theory. 

The L in  equat ion has the  fo rm 

25 U' (0) 
R ~ c ~ ,  c = U (g~) (2.1) 

whe re  Yc is the roo t  of the equa t ion  

- u ( 0 ) / 3  - 2 (0) ( ,c)v" (yc) = 0 . s s  (2 .2)  
(yc) J u -=''(y~) " 

The d i m e n s i o n l e s s  v a r i a b l e s  a r e  

y = 6g,  u = U U,  R : U 6 / v  (2.3) 

Here  6 is the  b o u n d a r y - l a y e r  t h i c k n e s s ,  def ined as the d i s t a n c e  f rom the wal l  to the  point  w he re  the 
ve loc i ty  u = 0.999 U (p r ime  denotes  d i f f e r en t i a t i on  wi th  r e s p e c t  to y). 
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Figure 2 shows the critical Reynolds number 

R ,  ~ R U0~* 
U5 

based  on the d i sp lacement  th ickness  6* = v / I  v 0 ] and the veloci ty  U 0 v e r s u s  the p a r a m e t e r  7 and the o sc i l -  
lation ampli tude ~.  The dashed s t ra igh t  line co r re sponds  to R .  = 3.93 �9 104. The Lin equation yields  this 
value of R .  for  the s ta t ionary  asympto t ic  suction prof i le  (1.7). 

Analyzing the influence of the f requency w on the value of R , ,  we see  that,  jus t  as for the boundary 
l ayer  without suction [1], t he re  is a mos t  "dangerous"  range  of f requencies  in which R , t a k e s  min ima l  values .  

i* 
2. 

3. 
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